
Opposition-Based Differential Evolution

Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy M.A. Salama

Faculty of Engineering, University of Waterloo, Waterloo, Canada

Summary. Although the concept of the opposition has an old history in other fields and sci-
ences, this is the first time that it contributes to enhance an optimizer. This chapter presents a
novel scheme to make the differential evolution (DE) algorithm faster. The proposed opposition-
based DE (ODE) employs opposition-based optimization (OBO) for population initialization and
also for generation jumping. In this work, opposite numbers have been utilized to improve the
convergence rate of the classical DE. A test suite with 15 benchmark functions is employed for
experimental verification. The contribution of the opposite numbers is empirically verified. Ad-
ditionally, two time varying models for control parameter adjustment of ODE are investigated.
Details of the ODE algorithm, the test set, and the comparison strategy are provided.

1 Introduction

The footprints of the opposition concept can be observed in many areas around us. This
concept has sometimes been called by different names. Opposite particles in physics,
antonyms in languages, complement of an event in probability, antithetic variables in
simulation, opposite proverbs in culture, absolute or relative complement in set theory,
subject and object in philosophy of science, good and evil in animism, opposition par-
ties in politics, theses and antitheses in dialectic, opposition day in parliaments, and
dualism in religions and philosophies are just some examples to mention (Table 1 con-
tains more examples and corresponding details).

The Yin-Yang symbol in the ancient Chinese philosophy is probably the oldest op-
position concept which was expressed by human kind (Figure 1). Black and white rep-
resent yin and yang, respectively. This symbol reflects the twisted duality of all things
in nature, namely, receptive vs. creative, feminine vs. masculine, dark vs. bright, and
finally passive force vs. active force. Greek’s classical elements to explain patterns in
nature (Figure 2) also mention and make use of the opposition concept, namely, fire
(hot and dry) vs. water (cold and wet), earth (cold and dry) vs. air (hot and wet).

It seems that without using the opposition concept explaining of different entities
around us is hard and maybe even impossible. In order to explain an entity or a situa-
tion we sometimes explain its opposite instead. In fact, opposition often offers a balance
between the entities. For instance, the east, west, south, and north can not be defined

U.K. Chakraborty (Ed.): Advances in Differential Evolution, SCI 143, pp. 155–171, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

156 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

alone. The same is valid for cold and hot and many other examples. Extreme oppo-
sites constitute our upper and lower boundaries. Imagination of the infinity is vague but
when we consider the limited, then it becomes more imaginable because its opposite is
definable. We finish the introduction with Rumi’s quote:

Therefore, the foundation of the creation was (based) upon opposites. Nec-
essarily, we are battling because of loss and gain. Rumi (1207 – 1273) in
“Masnawi”

In the following section, we explain how opposition concept can be utilized in opti-
mization. Firstly, the opposite point in one- and D-dimensional spaces are defined, and
secondly, the opposition-based optimization is described.

Table 1. Footprints of opposition in variant fields

Example Field Description

Opposite Particles/Elements Physics
Such as magnetic poles (N and S), opposite polarities (+
and −), electron-proton in an atom, action-reaction forces in
Newton’s third law, and so on.

Antonyms Language
A word that means the opposite of another word (e.g.,
hot/cold, fast/slow, top/down, left/right, day/night, on/off).

Antithetic Variables Simulation
Antithetic (negatively correlated) pair of random variables
used for variance reduction.

Opposite Proverbs Culture

Two proverbs with the opposite advice or meaning (e.g., The
pen is mightier than the sword. Actions speak louder than
words.); proverb or its opposite pair offers an applicable so-
lution based on specific situation or condition.

Complements Set theory
a) Relative complement (B −A = {x ∈ B|x �∈ A}), b) Ab-
solute complement (Ac = U − A, where U is the universal
set).

Opposition Politics
A political party or organized group opposed to the govern-
ment.

Inverter Digital design
Output of the inverter gate is one if input is zero and vice
versa.

Opposition Day Legislation
A day in the parliament in which small opposition parties
are allowed to propose the subject for debate (e.g., Canada’s
parliament has 25 opposition days).

Dualism Philosophy and Religion

Two fundamental principles/concepts, often in opposition to
each other; such as “Yin” and “Yang” in Chinese philoso-
phy and Taoist religion (Figure 1), “subject” and “object” in
philosophy of science, “good” and “evil” in animism.

Dialectic Philosophy

An exchange of “theses” and “antitheses” resulting in a “syn-
thesis” (e.g. in Hinduism, these three elements are creation
(Brahma), maintenance of order (Vishnu) and destruction or
disorder (Shiva)).

Classical Elements Archetype

A set of archetypal classical elements to explain patterns in
nature (e.g., the Greek classical elements are Fire (hot and
dry), Earth (cold and dry), Air (hot and wet), and Water (cold
and wet), Figure 2).

if-then-else Algorithm
if condition then statements [else elsestatements], the else
statements are executed when the opposite of the condition
happens.

Complement of an Event Probability P (A′) = 1 − P (A).
Revolution socio-political A significant Socio-political change in a short period of time.

Opposition-Based Differential Evolution 157

Fig. 1. Yin-Yang symbol or Taijitu in ancient Chinese philosophy. Black and white are repre-
senting yin (receptive, feminine, dark, passive force) and yang (creative, masculine, bright, active
force), respectively.

Fig. 2. Greek classical elements to explain patterns in nature are Fire (hot and dry), Earth (cold
and dry), Air (hot and wet), and Water (cold and wet).

2 Opposition-Based Optimization

Generally speaking, evolutionary optimization methods start with some candidate solu-
tions (initial population) and try to improve them toward some optimal solution(s). The
process of searching terminates when some predefined criteria are satisfied. In the ab-
sence of a priori information about the solution, we usually start with a random guesse.
The computation time, among others, is related to the distance of these initial guesses
from the optimal solution. We can improve our chance of starting with a closer (fitter)
solution by simultaneously checking the opposite solution. By doing this, the fitter one
(guess or opposite guess) can be chosen as an initial solution. In fact, according to prob-
ability theory, 50% of the time a guess is farther from the solution than its opposite. So,
starting with the closer of the two guesses (as judged by its fitness) has the potential to
accelerate convergence. The same approach can be applied not only to initial solutions
but also continuously to each solution in the current population. However, before con-
centrating on opposition-based optimization, we need to define the concept of opposite
numbers [1]:

Definition (opposite number) - Let x be a real number in an interval [a, b] (x ∈ [a, b]);
the opposite of x, denoted by x̆, is defined by

x̆ = a + b − x. (1)

158 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

Fig. 3. Illustration of a point and its corresponding opposite

Figure 3 (top) illustrates x and its opposite x̆ in interval [a, b]. As seen, x and x̆ are
located in equal distance from the interval center (|(a + b)/2 − x| = |x̆ − (a + b)/2|)
and from the interval boundaries (|x − a| = |b − x̆|) as well.

This definition can be extended to higher dimensions [1].

Definition (opposite point) - Let P (x1, x2, ..., xD) be a point in D-dimensional space,
where x1, x2, ..., xD are real numbers and xi ∈ [ai, bi] , i = 1, 2, ..., D. The opposite
point of P is defined by P̆ (x̆1, x̆2, ..., x̆D) where

x̆i = ai + bi − xi. (2)

Figure 3 illustrates a sample point and its corresponding opposite point in one, two,
and three dimensional spaces.

Now, after the definition of the opposite points we are ready to define Opposition-
Based Optimization (OBO).

Opposition-Based Optimization (OBO) - Let P (x1, x2, ..., xD), a point in a D-
dimensional space with xi ∈ [ai, bi] (i = 1, 2, 3, ..., D), be a candidate solution.
Assume f(x) is a fitness function which is used to measure candidate’s optimal-
ity. According to the opposite point definition, P̆ (x̆1, x̆2, ..., x̆D) is the opposite of
P (x1, x2, ..., xD). Now, if f(P̆) ≥ f(P), then point P can be replaced with P̆ ;
otherwise we continue with P . Hence, the point and its opposite point are evaluated
simultaneously to continue with the fitter one [1].

Opposition-Based Differential Evolution 159

3 Opposition-Based Differential Evolution

Similar to all population-based optimization algorithms, two main steps are distinguish-
able for DE, namely population initialization and producing new generations by evo-
lutionary operations such as mutation, crossover, and selection. We will enhance these
two steps using the opposition-based optimization concept. The classical DE is chosen
as a parent algorithm and the proposed opposition-based schemes are embedded in DE
to accelerate its convergence speed. Corresponding pseudo-code and flowchart for the
proposed approach (ODE) are given in Algorithm 1 and Figure 4, respectively. Newly
added/extended code segments (which are shown by grey blocks in Figure 4) will be
explained in the following subsections.

Fig. 4. New blocks are illustrated by gray boxes. Block (1): Opposition-based initialization, Block
(2): Opposition-based generation jumping (Jr: jumping rate, rand(0, 1): uniformly generated
random number, Np: population size)

3.1 Opposition-Based Population Initialization

In absence of a priori knowledge, random number generation is generally the only
choice to create an initial population. But as mentioned before, by utilizing OBO we
can obtain fitter starting candidates even when there is no a priori knowledge about
the solution(s). Block (1) from Figure 4 shows the implementation of opposition-based
population initialization. Following steps explain that procedure:

160 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

Algorithm 1. Pseudo-code for Opposition-Based Differential Evolution (ODE). P0:
Initial population, OP0: Opposite of initial population, P : Current population, OP :
Opposite of current population, D: Problem dimension, [aj , bj]: Range of the j-th vari-
able, Jr: Jumping rate, minp

j /maxp
j : Minimum/maximum value of the j-th variable in

the current population. Steps 2-7 and 27-34 are implementations of opposition-based
population initialization and opposition-based generation jumping, respectively.

1: Generate uniformly distributed random population P0

{Begin of Opposition-Based Population Initialization}
2: for i = 0 to Np do
3: for j = 0 to D do
4: OP0i,j ← aj + bj − P0i,j

5: end for
6: end for
7: Select Np fittest individuals from set the {P0, OP0} as initial population P0

{End of Opposition-Based Population Initialization}
{Begin of DE’s Evolution Steps}

8: while (BFV > VTR and NFC < MAXNFC) do
9: for i = 0 to Np do

10: Select three parents Pi1 , Pi2 , and Pi3 randomly from current population where i �=
i1 �= i2 �= i3

11: Vi ← Pi1 + F × (Pi2 − Pi3)
12: for j = 0 to D do
13: if rand(0, 1) < Cr then
14: Ui,j ← Vi,j

15: else
16: Ui,j ← Pi,j

17: end if
18: end for
19: Evaluate Ui

20: if (f(Ui) ≤ f(Pi)) then
21: P ′

i ← Ui

22: else
23: P ′

i ← Pi

24: end if
25: end for
26: P ← P ′

{End of DE’s Evolution Steps}
{Begin of Opposition-Based Generation Jumping}

27: if rand(0, 1) < Jr then
28: for i = 0 to Np do
29: for j = 0 to D do
30: OPi,j ← MINp

j + MAXp
j − Pi,j

31: end for
32: end for
33: Select Np fittest individuals from set the {P, OP} as current population P
34: end if

{End of Opposition-Based Generation Jumping}
35: end while

Opposition-Based Differential Evolution 161

step 1. Initialize the population P(Np) randomly,
step 2. Calculate opposite population by

OPi,j = aj + bj − Pi,j , (3)

i = 1, 2, ..., Np ; j = 1, 2, ..., D.

where Pi,j and OPi,j denote the jth variable of the ith population and the opposite-
population vector, respectively.

step 3. Select the Np fittest individuals from the set {P ∪ OP} as the initial population.

According to the above procedure, 2Np function evaluations are required instead
of Np for the regular random population initialization. But, by the opposition-based
initialization, the parent algorithm can start with the fitter initial individuals instead.

3.2 Opposition-Based Generation Jumping

By applying a similar approach to the current population, the evolutionary process can
be forced to jump to a fitter generation. Based on a jumping rate Jr (i.e. jumping prob-
ability), after generating new populations by mutation, crossover, and selection, the op-
posite population is calculated and the Np fittest individuals are selected from the union
of the current population and the opposite population. As a difference to opposition-
based initialization, it should be noted here that in order to calculate the opposite pop-
ulation for generation jumping, the opposite of each variable is calculated dynamically.
That is, the maximum and minimum values of each variable in the current popula-
tion ([MINp

j , MAXp
j]) are used to calculate opposite points instead of using variables’

predefined interval boundaries ([aj , bj]):

OPi,j = MINp
j + MAXp

j − Pi,j , i = 1, 2, ..., Np; j = 1, 2, ..., D. (4)

By staying within variables’ static boundaries, it is possible to jump outside of the
already shrunken search space and loose the knowledge of the current reduced space
(converged population). Hence, we calculate opposite points by using variables’ current
interval in the population ([MINp

j , MAXp
j]) which is, as the search does progress, in-

creasingly smaller than the corresponding initial range [aj , bj]. Block (2) from Figure 4
indicates the implementation of opposition-based generation jumping.

A pictorial example is presented in Figure 5 to exhibit opposition-based generation
jumping procedure in 2D space. The ‘S’ indicates location of the solution. Dark and
light circles present the points and the opposite points, respectively. As seen, in the
resulted population (shown by the current P), the average distance of the selected can-
didates (which contains some original points and the opposite of some others) from
the solution is smaller than it was for population (P) and opposite population (OP),
individually.

Generally speaking, in order to utilize the advantages of the opposition-based op-
timization to accelerate population-based algorithms, many schemes can be suggested
and investigated. But, it seems that considering the following features during the design
of these schemes are crucial:

162 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

Fig. 5. A pictorial example to show the opposition-based generation jumping in 2D space
(Np = 8)

Generality - Proposing general schemes makes it easy to use OBO on a wider range
of population-based optimization methods. Tailored schemes would be obviously
more rigid for generalization. Manipulating the internal operators of the optimizer
leads to lower generality, although, the customized schemes can result a higher
performance.

Simplicity - This feature is always desirable in all science and engineering design
problems. Simplicity supports a higher understandability and makes any design
easy to implement and modify. Also, in practical environments, the simple schemes
are widely appreciated.

Problem Independency - Proposed schemes have to be universal and capable to solve
a wider range of optimization problems. By equipping the parent optimizer with the
opposition-based schemes, it should not be specialized to solve a group of specific
problems (e.g., unimodal). This case is experimentally verifiable by applying the
algorithm to solve various global optimization problems. In other words, the pro-
posed schemes should not reduce the universality of the parent optimizer to solve
different problems.

Effectiveness - Considering opposite points needs more function calls and should
be controlled smartly to prevent loosing the benefits through extra computations.
Overall, the extra function calls should be reasonable and bring a benefit to the
optimization process. The benefit can be faster convergence, higher robustness,
or higher solution quality. Furthermore, improving one of these features should
not affect the other benefits. During the experimental verification of the pro-
posed algorithm, different measures are employed to investigate each criterion
individually.

Opposition-Based Differential Evolution 163

4 Experimental Verifications

4.1 Comparison of DE and ODE

A set of 15 well-known benchmark functions, which contains 7 unimodal and 8 mul-
timodal functions, has been selected for performance verification of the ODE. The
definition of the benchmark functions is given in Table 2.

Table 2. List of employed benchmark functions. S denotes the search space.

Name Definition S

1st De Jong
f1(X) =

D∑
i=1

xi
2 [−5.12, 5.12]D

Axis Parallel Hyper-Ellipsoid
f2(X) =

D∑
i=1

ixi
2 [−5.12, 5.12]D

Schwefel’s Problem 1.2
f3(X) =

D∑
i=1

(
i∑

j=1
xj

)2

[−65, 65]D

Rastrigin’s Function
f4(X) = 10D +

D∑
i=1

(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]D

Griewangk’s Function
f5(X) =

D∑
i=1

x2
i

4000 −
D∏

i=1
cos

(
xi√

i

)
+ 1 [−600, 600]D

Sum of Different Power
f6(X) =

D∑
i=1

|xi|(i+1) [−1, 1]D

Ackley’s Problem
f7(X) = −20 exp

⎛
⎜⎜⎝−0.2

√
D∑

i=1
x2

i

D

⎞
⎟⎟⎠ − exp

⎛
⎜⎝

D∑
i=1

cos(2πxi)

D

⎞
⎟⎠ + 20 + e [−32, 32]D

Levy Function
f8(X) = sin2(3πx1) +

D−1∑
i=1

(xi − 1)2(1 + sin2(3πxi+1)) + (xD − 1)(1 + sin2(2πxD)) [−10, 10]D

Michalewicz Function
f9(X) = −

D∑
i=1

sin(xi)(sin(ix2
i /π))2m, (m = 10) [0, π]D

Zakharov Function
f10(X) =

D∑
i=1

x2
i +

(
D∑

i=1
0.5ixi

)2

+
(

D∑
i=1

0.5ixi

)4

[−5, 10]D

Schwefel’s Problem 2.22
f11(X) =

D∑
i=1

|xi| +
D∏

i=1
|xi| [−10, 10]D

Step Function
f12(X) =

D∑
i=1

(�xi + 0.5�)2 [−100, 100]D

Alpine Function
f13(X) =

D∑
i=1

|xi sin(xi) + 0.1xi| [−10, 10]D

Exponential Problem
f14(X) = exp

(
−0.5

D∑
i=1

x2
i

)
[−1, 1]D

Salomon Problem
f15(X) = 1 − cos(2π ‖ x ‖) + 0.1 ‖ x ‖, where ‖ x ‖=

√
D∑

i=1
x2

i [−100, 100]D

We compare the convergence speed of DE and ODE by measuring the number of
function calls (NFC) which is the most commonly used metric in literature [16, 11, 2,
3, 4, 5, 6]. A smaller NFC means higher convergence speed. The termination criterion
is to find a value smaller than the value-to-reach (VTR) before reaching the maximum
number of function calls MAXNFC. In order to minimize the effect of the stochastic
nature of the algorithms on the metric, the reported number of function calls (NFC) for
each function is the average over 50 trials. The number of times, for which the algorithm
successfully reaches the VTR for each test function is measured as the success rate SR:

SR =
number of times reached VTR

total number of trials
. (5)

In order to combine these two measures (NFC and SR), a new measure, called
success performance, has been introduced as follows [6]:

SP =
mean (NFC for successful runs)

SR
. (6)

164 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

By this definition, the two following algorithms have equal performances (SP=100):

Algorithm A: mean (NFC for successful runs)=50 and SR=0.5,
Algorithm B: mean (NFC for successful runs)=100 and SR=1.

SP gives an equal importance weight for NFC and SR, but dependent to the different
applications each of them can be more important than other one. Some times success
rate is more crucial factor than convergence speed and vice versa. For our experiments,
gathering results for unsuccessful case is more time consuming because the algorithm
should meet the maximum number of function calls (MAXNFC) for termination. Param-
eter settings for all conducted experiments are presented in Table 3.

Table 3. Parameter settings

Parameter name Setting Reference

population size (Np)
100 [7, 9, 8]

differential amplification factor (F)
0.5 [10, 11, 13, 12, 7]

crossover probability constant (Cr)
0.9 [10, 11, 13, 12, 7]

jumping rate constant (Jr)
0.3 [4, 14, ?, 15]

maximum number of function calls (MAXNFC)
106 [4, 14, 15]

value to reach (VTR) 10−8 [6]

mutation strategy
DE/rand/1/bin [10, 16, 18, 7, 17]

In order to maintain a reliable and fair comparison (a) the parameter settings are
kept the same for all conducted experiments, unless we mention new settings, (b) for
all experiments, the reported values are the average of the results for 50 independent
runs, and most importantly (c) extra fitness evaluations required for the opposite points
(both in population initialization and also generation jumping phases) are counted as
well.

Results for DE and ODE to solve test problems are given in Table 4 (the results in
the last column will be discussed in section 4.2). As seen, ODE outperforms DE on
14 benchmark functions with respect to the success performance. Some sample perfor-
mance comparison graphs are presented in Figure 6. With the same control parameter
settings for both algorithms and fixing the jumping rate for the ODE (Jr = 0.3), their
success rates are comparable while ODE shows better convergence speed than DE. The
jumping rate is an important control parameter which, if optimally set, can achieve even
better results. Detailed discussion about this parameter is given in [14, ?].

4.2 Contribution of Opposite Points

In this section, we want to verify that the achieved acceleration rate is really due to
utilizing opposite points. For this purpose, all parts of the proposed algorithm are kept
untouched and instead of using opposite points for the population initialization and the
generation jumping, uniformly generated random points are employed. In order to have
a fair competition for this case, exactly like what we did for opposite points, the current

Opposition-Based Differential Evolution 165

Table 4. Comparison of DE, ODE, and RDE. The best result for each case is highlighted in
boldface. Results for RDE has been explained in section 4.2 (corresponding results for replacing
the opposite points with random points).

DE ODE RDE
F D NFC SR SP NFC SR SP NFC SR SP
f1 30 87748 1 87748 47716 1 47716 115096 1 115096
f2 30 96488 1 96488 53304 1 53304 126780 1 126780
f3 20 177880 1 177880 168680 1 168680 231152 1 231152
f4 10 328844 1 328844 70389 0.76 92617 501875 0.96 522786
f5 30 113428 1 113428 69342 0.96 72231 149744 1 149744
f6 30 25140 1 25140 8328 1 8328 29096 1 29096
f7 30 169152 1 169152 98296 1 98296 222784 1 222784
f8 30 101460 1 101460 70408 1 70408 138308 1 138308
f9 10 191340 0.76 251763 213330 0.56 380946 306900 0.60 511500
f10 30 385192 1 385192 369104 1 369104 498200 1 498200
f11 30 187300 1 187300 155636 1 155636 244396 1 244396
f12 30 41588 1 41588 23124 1 23124 54316 1 54316
f13 30 411164 1 411164 337532 1 337532 927230 0.24 3863458
f14 10 19528 1 19528 15704 1 15704 23156 1 23156
f15 10 37824 1 37824 24260 1 24260 46800 1 46800

SRave 0.98 0.95 0.92

interval (dynamic interval, [MINp
j , MAXp

j]) of the variables are used to generate new
random points in the generation jumping phase. So, line 4 from Algorithm 1 should be
changed to:

RP0i,j ←− aj + (bj − aj) × rand(0, 1),

where rand(0, 1) generates a uniformly distributed random number on the interval
(0, 1). This change is for the initialization part, so the predefined boundaries of vari-
ables ([aj , bj]) have been used to generate new random numbers. In fact, instead of
generating Np, 2Np random individuals are generated. In the same manner, line 30
should be replaced with

RPi,j ←− MINp
j + (MAXp

j − MINp
j) × rand(0, 1).

As mentioned before, for generation jumping, the current boundaries of the variables
([MAXp

j , MINp
j]) are used to generate random numbers. And finally, in order to have

the same selection method, lines 7 and 33 in Algorithm 1 are substituted with

Select Np fittest individuals from set the {P, RP} as current population P ;

After these modifications, the random version of ODE (called RDE) is introduced.
Now, we are ready to apply this algorithm to solve our test problems. All control param-
eters are kept the same to have a fair comparison. Results for the current algorithm are
presented in Table 4. As seen, RDE can not outperform DE or ODE on any of bench-
mark function with respect to the success performance (even, its average success rate
is less than others). This clearly demonstrates that the achieved improvements are due
to usage of opposite points, and that the same level of improvement cannot be achieved
via additional random sampling.

166 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

(a) f1, ODE is 1.83 times faster (b) f2, ODE is 1.81 times faster

(c) f5, ODE is 1.63 times faster (d) f7, ODE is 1.72 times faster

Fig. 6. Sample graphs (best solution vs. number of function calls)

5 ODE with Variable Jumping Rate

In this section, a time varying jumping rate (TVJR) model for opposition-based differ-
ential evolution (ODE) has been investigated. According to this model, the jumping rate
changes during the evolution based on the number of function evaluations. The same
test suite has been employed to compare performance of DE and ODE with variable
jumping rate settings.

Generally speaking, parameter control in evolutionary algorithms (EAs) can be per-
formed in following three ways [19]: deterministic, adaptive, and self-adaptive. The first
one uses a predefined rule to modify the parameter value without gaining any feedback
from the evolution process while the second one changes the parameter value based on
the information which receives from the search process. The third one utilizes the same
evolutionary approach not only to solve the problem but also to optimize own control
parameters by encoding some strategic parameters inside the population.

The proposed idea in this section is similar to Das et al. work [20]. They uti-
lized time varying approach for setting of the scale factor F in differential evolution

Opposition-Based Differential Evolution 167

(DE), which can be considered as a deterministic approach according to the mentioned
categorization.

5.1 Investigated Jumping Rate Models

For ODE a constant value for jumping rates was utilized. Here, two types of varying
jumping rate are investigated (linearly increasing and decreasing functions). Three pro-
posed settings for Jr are as follows:

• Jr (constant)= Jrave ,

• Jr(TVJR1) = (Jrmax − Jrmin) ×
(

MAXNFC−NFC
MAXNFC

)
,

• Jr(TVJR2) = (Jrmax − Jrmin) − (Jrmax − Jrmin) ×
(

MAXNFC−NFC
MAXNFC

)
,

where Jrave , Jrmax , and Jrmin are the average, maximum, and minimum jumping rates,
respectively. MAXNFC and NFC are the maximum number of function calls and the
current number of function calls, respectively.

In order to support a fair comparison between these three different jumping rate
settings, the average jumping rate should be the same for all of them. Obviously we

should have Jrave = (Jrmax+Jrmin
)

2 . Following values for these parameters are se-
lected: Jrave = 0.3 and Jrmin = 0 (no jumping), so Jrmax = 0.6. Figure 7 shows the
corresponding diagrams (jumping rate vs. NFCs) for three following settings:

• Jr(constant) = 0.3,

• Jr(TVJR1) = 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
,

• Jr(TVJR2) = 0.6 − 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
.

Jr(TVJR1) represents higher jumping rate during exploration and lower jumping
rate during exploitation (fine-tuning); Jr(TVJR2) performs exactly in reverse manner.
By these settings, we can investigate effects of generation jumping during optimization
process.

Fig. 7. Jumping rate vs. NFCs for Jr(ODE) = 0.3, Jr(TVJR1) = 0.6 ×
(

MAXNFC−NFC
MAXNFC

)
, and

Jr(TVJR2) = 0.6 − 0.6 ×
(

MAXNFC−NFC
MAXNFC

)

168 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

5.2 Empirical Results

The benchmark test set and all parameter settings are the same as before. The only dif-
ference is the maximum number of function calls, which is 2×105 for f1, f2, f3, f6, f8,
f15, f21; 5×105 for f5, f18, f19, f31; and 5×104 for f7, f23, f41, f56. Results of apply-
ing DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE (TVJR2) to solve the test problems
are given in Table 5. As seen, ODE (TVJR1) delivers best success performance (SP)
for 13 benchmark functions, while this number for DE, ODE (Jr = 0.3), and ODE
(TVJR2) is 0, 1, and 1, respectively.

Table 5. Comparison of DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE (TVJR2). D: Dimen-
sion, NFC: Number of function calls (average over 50 trials), SR: Success rate, SP: Success
performance.

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2)
F D NFC SR SP NFC SR SP NFC SR SP NFC SR SP
f1 30 87748 1 87748 47716 1 47716 42300 1 42300 66305 1 66305
f2 30 96488 1 96488 53304 1 53304 45720 1 45720 72990 1 72990
f3 20 177880 1 177880 168680 1 168680 159775 1 159775 175460 1 175460
f4 10 328844 1 328844 65056 0.64 101650 59063 0.80 73829 136070 1 136070
f5 30 113428 1 113428 64920 0.75 86560 63594 0.90 70660 86235 1 86235
f6 30 25140 1 25140 8328 1 8328 6080 1 6080 14175 1 14175
f7 30 169152 1 169152 98296 1 98296 88355 1 88355 117095 1 117095
f8 30 101460 1 101460 70408 1 70408 65247 0.95 68681 82245 1 82245
f9 10 215260 0.56 384393 168470 0.76 221671 188440 0.65 289908 379660 0.60 632767
f10 30 385192 1 385192 369104 1 369104 389955 1 389955 360595 1 360595
f11 30 187300 1 187300 155636 1 155636 146795 1 146795 167685 1 167685
f12 30 41588 1 41588 23124 1 23124 20290 1 20290 29165 1 29165
f13 30 411164 1 411164 337532 1 337532 326350 1 326350 377425 1 377425
f14 10 19528 1 19528 15704 1 15704 14270 1 14270 17735 1 17735
f15 10 37824 1 37824 24260 1 24260 21400 1 21400 28710 1 28710

SRave 0.97 0.94 0.95 0.97

Pairwise comparison of these algorithms is presented in Table 6. The given number
in each cell indicates on how many functions the algorithm in each row outperforms
the corresponding algorithm in each column. The last column of the table shows the
total numbers (number of cases which the algorithm outperforms other competitors);
by comparing these numbers the following ranking is obtained: ODE (TVJR1) (best),
ODE (Jr = 0.3), ODE (TVJR2), and DE.

Table 6. Pairwise comparison of DE, ODE (Jr = 0.3), ODE (TVJR1), and ODE (TVJR2).
Given number in each cell shows how many functions the algorithm in each row outperforms the
corresponding algorithm in each column. The last column shows the total numbers (number of
cases which the algorithm outperforms other competitors).

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2) Total
DE - 0 1 1 2

ODE (Jr = 0.3) 15 - 2 12 29
ODE (TVJR1) 14 13 - 14 41
ODE (TVJR2) 14 3 1 - 18

Opposition-Based Differential Evolution 169

The average success rate (shown in the last row of the Table 5) for DE and ODE
(TVJR2) is marginally better than other two competitors.

6 Conclusion

In this chapter, the concept of opposition-based optimization (OBO) has been employed
to accelerate differential evolution. The OBO was utilized to introduce opposition-based
population initialization and opposition-based generation jumping. By embedding these
two steps within DE, opposition-based differential evolution (ODE) was proposed. The
experimental results clearly confirmed that ODE is faster than the classical DE. Our
conclusion can be summarized as follows:

• By replacing opposite points with uniformly generated random points in the same
variables’ range, the resulted algorithm (RDE) performs slower than the parent
algorithm (DE). Therefore, the contribution of opposite points to the acceleration
process was confirmed and was not reproducible by additional random sampling.

• According to our comprehensive experiments (not included in this chapter), the
range [0.1, 0.4] is recommended for an unknown optimization problem. Most of
the functions presented a reliable acceleration improvement and almost a smooth
behavior in this interval. Although, the optimal jumping rate can be somewhere out
of this range, higher jumping rates are generally not recommended.

• As an advantageous of an opposite versus random point, purely random resampling
or selection of solutions from a given population has the higher chance of visiting or
even revisiting unproductive regions of the search space compared to the opposite
points [25] .

• The benefits of opposition-based optimization is not the same for different prob-
lems. This is because of using fix settings for the parameters instead of the optimal
ones and/or the different characteristics of each problem (e.g., modality, dimension,
surface features, separability of the variables and so on). Similar to all optimization
approaches, ODE does not present a consistent behavior over different problems.
However, in overall and over the employed benchmark test suite, ODE performed
better than classical DE.

• The proposed opposition-based schemes are general enough to be applied on other
population-based algorithms. The opposition-based schemes work at the population
level and leave the evolutionary part of the algorithms untouched. This generality
gives higher flexibility to these schemes to be embedded inside other population-
based algorithms for further investigation.

• The optimal control parameters are problem-oriented such that developing a self-
adaptive/ adaptive algorithm is a valuable attempt. Many studies confirm that for
population-based algorithms the optimal parameters are problem-oriented. Running
limited trials to determine desirable parameters is a common approach (if not a
practical way for time consuming objective functions). For this reason, the self-
adaptive/adaptive control parameter setting would be a valuable improvement for
ODE.

• The time varying jumping rate for opposition-based differential evolution was pro-
posed and two behaviorally reverse versions (linearly decreasing and increasing

170 S. Rahnamayan, H.R. Tizhoosh, and M.M.A. Salama

functions) were compared with the constant setting [15]. The results show that the
linearly decreasing jumping rate performs better than constant setting and also than
linearly increasing policy. This means generation jumping in the exploration time
is more desirable than during exploitation. Because during the fine-tuning, we are
faced with shrunken search space and the jumping of the individuals may not be ad-
vantageous (because the point and the opposite-point are very close together). There
is no exact border between exploration and exploitation stage. Hence, the gradual
behavior for the decreasing and increasing functions are proposed.

• The proposed time varying jumping rate functions utilize the maximum number of
function calls (MAXNFC) which may not be exactly known for the black-box opti-
mization problems; this can be regarded as a disadvantage for this method. Adaptive
setting of the jumping rate can be a desirable solution.

• Results are promising, however, the opposition-based optimization is still in its in-
fancy. Results confirm that the opposition concept has the potential to play desire
and positive role in optimization. But, it is important to mention that the current
study constitutes the first step of this newly opened direction. Like many other new
concepts, opposition-based optimization needs further studies to disclose its exact
benefits, weaknesses, and limitations. In fact, the main claim is not defeating DE
or any of its numerous versions but to introduce a new notion into optimization via
metaheuristics; this is the notion of opposition.

The opposition-based optimization is simple to implement and open to be used in
many different ways for different purposes. This study is a starting point in this direction
to confirm the potentials and motivate other researchers in optimization and machine
learning fields to engage with the opposition concept.

References

1. Tizhoosh, H.R.: Opposition-Based Learning: A New Scheme for Machine Intelligence. In:
Int. Conf. on Computational Intelligence for Modelling Control and Automation (CIMCA
2005), Vienna, Austria, vol. I, pp. 695–701 (2005)

2. Andre, J., Siarry, P., Dognon, T.: An Improvement of the Standard Genetic Algorithm Fight-
ing Premature Convergence in Continuous Optimization. Advance in Engineering Soft-
ware 32, 49–60 (2001)

3. Hrstka, O., Kučerová, A.: Improvement of Real Coded Genetic Algorithm Based on Differ-
ential Operators Preventing Premature Convergence. Advance in Engineering Software 35,
237–246 (2004)

4. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolu-
tion Algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World
Congress on Computational Intelligence, Vancouver, Canada, pp. 7363–7370 (2006)

5. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution
for Optimization of Noisy Problems. In: IEEE Congress on Evolutionary Computation (CEC
2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 6756–
6763 (2006)

6. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Op-
timization. Technical Report, Nanyang Technological University, Singapore And KanGAL
Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (May 2005)

Opposition-Based Differential Evolution 171

7. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters
in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal
of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

8. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the Lévy probabil-
ity distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)

9. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on
Evolutionary Computation 3(2), 82–102 (1999)

10. Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

11. Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle
Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In:
Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 1980–
1987. IEEE Publications, Los Alamitos (2004)

12. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing - A
Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)

13. Ali, M.M., Törn, A.: Population set-based global optimization algorithms: Some modifica-
tions and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)

14. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution
(ODE). Journal of IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)

15. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution
(ODE) With Variable Jumping Rate. In: IEEE Symposium on Foundations of Computational
Intelligence, Honolulu, Hawaii, USA, April 2007, pp. 81–88 (2007)

16. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to
Global Optimization (Natural Computing Series), 1st edn. Springer, Heidelberg (2005)

17. Sun, J., Zhang, Q., Tsang, E.P.K.: DE/EDA: A new evolutionary algorithm for global opti-
mization. Information Sciences 169, 249–262 (2005)

18. Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Berlin
(2004)

19. Eiben, A.E., Hinterding, R.: Paramater Control in Evolutionary Algorithms. IEEE Transac-
tions on Evolutionary Computation 3(2), 124–141 (1999)

20. Das, S., Konar, A., Chakraborty, U.K.: Two Improved Differential Evolution Schemes for
Faster Global Search. In: Proceedings of the 2005 conference on Genetic and evolutionary
computation, Washington, USA, pp. 991–998 (2005)

21. Tizhoosh, H.R.: Reinforcement Learning Based on Actions and Opposite Actions. In: ICGST
International Conference on Artificial Intelligence and Machine Learning (AIML 2005),
Cairo, Egypt (2005)

22. Tizhoosh, H.R.: Opposition-Based Reinforcement Learning. Journal of Advanced Computa-
tional Intelligence and Intelligent Informatics 10(3) (2006)

23. Shokri, M., Tizhoosh, H.R., Kamel, M.: Opposition-Based Q(λ) Algorithm. In: 2006 IEEE
World Congress on Computational Intelligence (IJCNN 2006), Vancouver, Canada, pp. 646–
653 (2006)

24. Ventresca, M., Tizhoosh, H.R.: Improving the Convergence of Backpropagation by Opposite
Transfer Functions. In: 2006 IEEE World Congress on Computational Intelligence (IJCNN
2006), Vancouver, Canada, pp. 9527–9534 (2006)

25. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition versus Randomness in Soft
Computing Techniques. Elsevier Journal on Applied Soft Computing 8, 906–918 (2008)

26. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters
in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE
Transactions on Evolutionary Computation 10(6), 646–657 (2006)

27. Rahnamayan, S.: Opposition-Based Differential Evolution, PhD Thesis, Departement of Sys-
tems Design Engineering, University of Waterloo, Waterloo, Canada (May 2007)

	Opposition-Based Differential Evolution
	Introduction
	Opposition-Based Optimization
	Opposition-Based Differential Evolution
	Opposition-Based Population Initialization
	Opposition-Based Generation Jumping

	Experimental Verifications
	Comparison of DE and ODE
	Contribution of Opposite Points

	ODE with Variable Jumping Rate
	Investigated Jumping Rate Models
	Empirical Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

